• UNDERSTAND

    Contamination Sources

  • UNDERSTAND

    Eutrophication

Abfall & Verschmutzung

Eine effiziente Abfallwirtschaft zur Erhaltung der Gesundheits- und Lebensqualität ist durch das stetige Wachstum der städtischen Bevölkerung und dem damit verbundenen gestiegenen Konsum  zu einer wichtigen globalen Herausforderung geworden. Einerseits ist es wichtig Abfall entsprechend seiner Bestandteile zu klassifizieren, andererseits muss aber auch die chemische Zusammensetzung von beispielsweise organischen Schadstoffen bestimmt werden, um eventuelle Flächensanierungen zu planen.

TOC im Abfall

Deponien sind u.a. danach klassifiziert, ob sie umweltgefährdenden Abfall aufnehmen dürfen oder nicht. In der Abfallwirtschaft gilt der TOC als ein Summenparameter für die Verunreinigung mit organischen Verbindungen oder zur Evaluierung, ob ein Material recycelt werden kann. Außerdem spielt die Bestimmung des TOC bei der Qualitätskontrolle von Industriematerialien wie Flugaschen, Zement oder Kaolin eine wichtige Rolle.

Temperaturabhängige Kohlenstoff-Fraktionen

Die einfache, klassische Unterscheidung in TOC und TIC steht mittlerweile eine Methode entgegen mit der zusätzlich elementarer Kohlenstoff (ROC) in Feststoffen bestimmt werden kann. Dies ist von Bedeutung für die Deponierung von Abfällen, da ROC biologisch inaktiv und ohne Umweltrelevanz ist, aber klassischerweise mit dem TOC mitbestimmt wird. Mit einem Temperaturrampenverfahren, das in der DIN19539 beschrieben und mit dem soli TOC cube umgesetzt wird, können alle drei Kohlenstoff-Fraktionen bestimmt werden (TOC, ROC, TIC).

Schadstoffquellen

Mittels stabiler Isotope können komplexe Interaktionen von organischen Schadstoffen in der Umwelt nachvollzogen werden. Die Betrachtung der Quellen und des Verhaltens von Schadstoffen ist essentiell für die Planung von Sanierungen, Ressourcenmanagement und den Umweltschutz im Allgemeinen. Mit unseren Geräten können wir dazu beitragen diese Prozesse besser zu verstehen und unsere Naturwunder auch für die nächste Generation zu erhalten.

Publikationen zum Thema Abfall & Verschmutzung mit unseren Geräten

Unsere Kunden nutzen unsere Geräte für erstaunliche Forschungsprojekte im Bereich Abfall und Verschmutzung. Um Ihnen zu zeigen, wie unsere Kunden ihre Forschung durchführen und wie unsere IRMS-Geräte eingesetzt werden, haben wir eine Reihe von Fachpublikationen gesammelt, die unsere Produkte namentlich nennen. Die Informationen zu diesen Fachartikeln finden Sie unten. Durch Klicken auf den Link werden Sie zur Website des jeweiligen Zeitschriftenverlags weitergeleitet, wo Sie die Publikation herunterladen können.

Wenn Sie unsere Publikationsdatenbank durchsuchen möchten oder die Liste der Ergebnisse an sich selbst oder an Ihre Kollegen mailen möchten, dann werfen Sie einen Blick auf unsere gesamte Publikationsdatenbank.

84 Ergebnisse:

Balancing the Nitrogen Derived from Sewage Effluent and Fertilizers Applied with Drip Irrigation
Water, Air, & Soil Pollution (2017)
Lijun Guo, Jiusheng Li, Yanfeng Li, Di Xu

Balancing the nitrogen derived from sewage effluent and fertilizers is essential for efficiently utilizing the nitrogen and minimizing the environmental degradations when applying sewage effluent. Pot experiments of maize (Zea mays L.) under drip irrigation were performed using 15N labeled urea to quantify the nitrogen balances of sewage effluent and fertilizers. Field experiments were conducted to confirm the findings of pot experiments. Four nitrogen rates ranging from 0 to 2.64 g/pot (0–210 kg/ha equivalently) for pot experiments and from 0 to 180 kg/ha for field experiments were established applying either secondary sewage effluent (SW) or groundwater (GW). Both pot and field experiments revealed that SW irrigation boosted nitrogen uptake and yield of maize compared to GW irrigation. However, the sewage-derived effects decreased with increasing nitrogen rates. SW irrigation could facilitate the uptake of 15N labeled urea relative to GW irrigation. Nonetheless, the nitrogen containing in effluent possibly had lower uptake effectiveness than the fertilizer urea for maize, suggesting greater potential for nitrogen losses resulting from effluent nitrogen compared to urea nitrogen. The percentage utilization of effluent nitrogen declined from 43 to 34% in 2014 and 48 to 32% in 2015 as nitrogen rates increased from 0 to 2.64 g/pot. Besides, the percentages utilization of total nitrogen (including effluent and fertilizers) under SW irrigation increased from 43 to 55% in 2014 and from 48 to 55% in 2015 when the rates increased from 0 to 1.76 g/pot, and subsequently decreased to 48% in 2014 and 44% in 2015 at the rate of 2.64 g/pot. This result was strengthened by the pattern of nitrogen recovery efficiency observed in the field experiments. Overall results of pot and field experiments recommended an optimal rate of 120 kg/ha for maize under drip irrigation applying SW to maximize nitrogen use efficiency and achieve an acceptably high yield.

Geochemical distribution and fate of arsenic in water and sediments of rivers from the Hokusetsu area, Japan
Journal of Hydrology: Regional Studies (2017)
Emilie Even, Harue Masuda, Takahiro Shibata, Aki Nojima, Yusuke Sakamoto, Yusuke Murasaki, Hitoshi Chiba

STUDY REGION Hokusetsu Region in Osaka, Japan. STUDY FOCUS The As contamination was investigated through the geochemical mapping and analysis of river waters and bed sediments over an area of 440km2. Sulfur from sulfides in rocks and dissolved sulfates in water were compared via isotopic analysis to assess their origin and the subsequently released As. The fate of As (transport, binding on settling particles) was evaluated through the total and dissolved fractions of As and trace metals Fe, Mn and Al in river waters. NEW HYDROLOGICAL INSIGHTS FOR THE REGION The geochemical mapping showed that As in river water exceeded the maximum limit concentration of 10ppb in several places. The highest As levels (waters and sediments) correlated well with the surface geologies, concentrating in a halo around granitic intrusion and nearby faults. The isotopic analysis of sulfur revealed the occurrence of two kinds of sulfide mineralizations responsible for As contamination: one from Late Paleozoic submarine volcanism in sedimentary rocks, and one from Late Cretaceous igneous activities in contact-metamorphosed rocks disseminated with sulfides. The transport of As along river courses occurred mainly as a dissolved species rather than absorbed on Fe/Mn/Al particles, signifying the least role of iron oxy-hydroxides in As adsorption.

Examining nitrogen dynamics in the unsaturated zone under an inactive cesspit using chemical tracers and environmental isotopes
Applied Geochemistry (2017)
Claudia Varnier, Ricardo Hirata, Ramon Aravena

This study evaluates the dynamics of nitrogen compounds generated by infiltration of wastewater from an inactive cesspit in the unconfined and sedimentary Adamantina Aquifer in Urânia, Brazil. A monitoring station, consisting of an 11.2 m well (1.8 m in diameter) with an array of 12 tensiometers and 12 suction lysimeters, was installed to monitor the shallow unsaturated zone from 0.5 to 9 m depth. A monitoring well was also installed below the water level to monitor the shallow aquifer. High amounts of ammonium (up to 96 mg/L NH4+-N) and nitrate (up to 458 mg/L NO3−-N) were observed in the unsaturated zone porewater which is comparable to active septic systems effluents. The distribution of NO3−, Cl− and Na+, typical constituents of sewage effluents, varied seasonally and spatially, which is correlated with changes in infiltration rates between the wet and dry seasons and with hydraulic conductivity variations in interlayered sandy and clayey sediments. A detailed monitoring of porewater geochemistry demonstrated the occurrence of several important reactions affecting nitrogen dynamics in the unsaturated zone: i) oxidation of organic matter, ii) ammonification, iii) nitrification, iv) methanogenesis, v) denitrification and likely, vi) sulfate reduction. The changes in nitrogen compound distribution and δ15NNO3 and δ18ONO3 values in porewater, in association with the N2O concentration and δ15NN2O and δ18ON2O signatures in gas samples, indicate the occurrence of nitrification and denitrification, suggesting the coexistence of reducing and oxidizing microsites in the unsaturated zone. This study indicated that cesspits can generate a significant amount of nitrate even a few years after being inactivated which can represent a potential long-term source of nitrate to groundwater in highly populated areas.

Examining nitrogen dynamics in the unsaturated zone under an inactive cesspit using chemical tracers and environmental isotopes
Applied Geochemistry (2017)
Claudia Varnier, Ricardo Hirata, Ramon Aravena

This study evaluates the dynamics of nitrogen compounds generated by infiltration of wastewater from an inactive cesspit in the unconfined and sedimentary Adamantina Aquifer in Urânia, Brazil. A monitoring station, consisting of an 11.2 m well (1.8 m in diameter) with an array of 12 tensiometers and 12 suction lysimeters, was installed to monitor the shallow unsaturated zone from 0.5 to 9 m depth. A monitoring well was also installed below the water level to monitor the shallow aquifer. High amounts of ammonium (up to 96 mg/L NH4+-N) and nitrate (up to 458 mg/L NO3−-N) were observed in the unsaturated zone porewater which is comparable to active septic systems effluents. The distribution of NO3−, Cl− and Na+, typical constituents of sewage effluents, varied seasonally and spatially, which is correlated with changes in infiltration rates between the wet and dry seasons and with hydraulic conductivity variations in interlayered sandy and clayey sediments. A detailed monitoring of porewater geochemistry demonstrated the occurrence of several important reactions affecting nitrogen dynamics in the unsaturated zone: i) oxidation of organic matter, ii) ammonification, iii) nitrification, iv) methanogenesis, v) denitrification and likely, vi) sulfate reduction. The changes in nitrogen compound distribution and δ15NNO3 and δ18ONO3 values in porewater, in association with the N2O concentration and δ15NN2O and δ18ON2O signatures in gas samples, indicate the occurrence of nitrification and denitrification, suggesting the coexistence of reducing and oxidizing microsites in the unsaturated zone. This study indicated that cesspits can generate a significant amount of nitrate even a few years after being inactivated which can represent a potential long-term source of nitrate to groundwater in highly populated areas.

Combined cluster and discriminant analysis: An efficient chemometric approach in diesel fuel characterization
Forensic Science International (2017)
Márton Novák, Dóra Palya, Zsolt Bodai, Zoltán Nyiri, Norbert Magyar, József Kovács, Zsuzsanna Eke

Combined cluster and discriminant analysis (CCDA) as a chemometric tool in compound specific isotope analysis of diesel fuels was studied. The stable carbon isotope ratios (δ13C) of n-alkanes in diesel fuel can be used to characterize or differentiate diesels originating from different sources. We investigated 25 diesel fuel samples representing 20 different brands. The samples were collected from 25 different service stations in 11 European countries over a 2 year period. The n-alkane fraction of diesel fuels was separated using solid-state urea clathrate formation combined with silica gel fractionation. The stable carbon isotope ratios of C10–C24 n-alkanes were measured with gas chromatography–isotope ratio mass spectrometry (GC–IRMS) using perdeuterated n-alkanes as internal standards. Beside the 25 samples one additional diesel fuel was prepared and measured three times to get totally homogenous samples in order to test the performance of our analytical and statistical routine. Stable isotope ratio data were evaluated with hierarchical cluster analysis (HCA), principal component analysis (PCA) and CCDA. CCDA combines two multivariate data analysis methods hierarchical cluster analysis with linear discriminant analysis (LDA). The main idea behind CCDA is to compare the goodness of preconceived (based on the sample origins) and random groupings. In CCDA all the samples were compared pairwise. The results for the parallel sample preparations showed that the analytical procedure does not have any significant effect on the δ13C values of n-alkanes. The three parallels proved to be totally homogenous with CCDA. HCA and PCA can be useful tools when the examining of the relationship among several samples is in question. However, these two techniques cannot be always decisive on the origin of similar samples. The initial hypothesis that all diesel fuel samples are considered chemically unique was verified by CCDA. The main advantage of CCDA is that it gives an objective index number about the level of similarity among the investigated samples. Thus the application of CCDA supplemented by the traditionally used multivariate methods greatly improves the efficiency of statistical analysis in the CSIA of diesel fuel samples.

Environmental assessment of freshwater ecosystems of the Sava River watershed and Cerkniško Lake, Slovenia, using the bioindicator species Fontinalis antipyretica : insights from stable isotopes and selected elements
Isotopes in Environmental and Health Studies (2016)
Špela Mechora, Tjaša Kanduč

Ten locations in the Notranjska region, Slovenia, with different land use in the catchment (town, village and agricultural areas), including reference points with different geological composition considered as unpolluted sites, were sampled for water and aquatic moss to evaluate environmental assessment in fresh water systems of the Sava River watershed. Samples of fresh water and Fontinalis antipyretica were taken in all four seasons during the years 2010 and 2012. The water chemistry of the investigated locations was dominated by , while concentrations of seasonally ranged from 2.1 to 6.4 mg L−1 and at one of the reference sites did not exceed 1.3 mg L−1. δ13CDIC values seasonally ranged from −13.3 to −8.1 ‰ and indicated waters dominated by degradation of organic matter and dissolution of carbonates. δ13Cplant values of F. antipyretica seasonally ranged from −45 to −32.9 ‰ and of δ15Nplant from −0.2 to 6.5 ‰. The higher δ15N value of 6.5 ‰ found in F. antipyretica was related to agricultural activity i...

Short-term fasts increase levels of halogenated flame retardants in tissues of a wild incubating bird.
Environmental research (2016)
Sarah C Marteinson, Ken G Drouillard, Jonathan Verreault

Many species are adapted for fasting during parts of their life cycle. For species undergoing extreme fasts, lipid stores are mobilized and accumulated contaminants can be released to exert toxicological effects. However, it is unknown if short-term fasting events may have a similar effect. The objective of this study was to determine if short successive fasts are related to contaminant levels in liver and plasma of birds. In ring-billed gulls (Larus delawarensis), both members of the pair alternate between incubating the nest for several hours (during which they fast) and foraging, making them a useful model for examining this question. Birds were equipped with miniature data loggers recording time and GPS position for two days to determine the proportion and duration of time birds spent in these two activities. Liver and plasma samples were collected, and halogenated flame retardants (HFRs) (PBDEs and dechlorane plus) and organochlorines (OCs) (PCBs, DDTs, and chlordane-related compounds) were determined. Most birds (79%) exhibited plasma lipid content below 1%, indicating a likely fasted state, and plasma lipid percent declined with the number of hours spent at the nest site. The more time birds spent at their nest site, the higher were their plasma and liver concentrations of HFRs. However, body condition indices were unrelated to either the amount of time birds fasted at the nest site or contaminant levels, suggesting that lipid mobilization might not have been severe enough to affect overall body condition of birds and to explain the relationship between fasting and HFR concentrations. A similar relationship between fasting and OC levels was not observed, suggesting that different factors are affecting short-term temporal variations in concentrations of these two classes of contaminants. This study demonstrates that short fasts can be related to increased internal contaminant exposure in birds and that this may be a confounding factor in research and monitoring involving tissue concentrations of HFRs in wild birds.

Biodegradability of algal-derived organic matter in a large artificial lake by using stable isotope tracers.
Environmental science and pollution research international (2016)
Yeonjung Lee, Bomi Lee, Jin Hur, Jun-Oh Min, Sun-Yong Ha, Kongtae Ra, Kyung-Tae Kim, Kyung-Hoon Shin

In order to understand the biodegradability of algal-derived organic matter, biodegradation experiments were conducted with (13)C and (15)N-labeled natural phytoplankton and periphytic algal populations in experimental conditions for 60 days. Qualitative changes in the dissolved organic matter were also determined using parallel factor analysis and the stable carbon isotopic composition of the hydrophobic dissolved organic matter through the experimental period. Although algal-derived organic matter is considered to be easily biodegradable, the initial amounts of total organic carbon newly produced by phytoplankton and periphytic algae remained approximately 16 and 44 % after 60 days, respectively, and about 22 and 43 % of newly produced particulate nitrogen remained. Further, the dissolved organic carbon derived from both algal populations increased significantly after 60 days. Although the dissolved organic matter gradually became refractory, the contributions of the algal-derived organic matter to the dissolved organic matter and hydrophobic dissolved organic matter increased. Our laboratory experimental results suggest that algal-derived organic matter produced by phytoplankton and periphytic algae could contribute significantly to the non-biodegradable organic matter through microbial transformations.
Schlagworte: C , N , soi , ec , po , EA

Trophic transfer of nano-TiO2 in a paddy microcosm: A comparison of single-dose versus sequential multi-dose exposures.
Environmental pollution (Barking, Essex : 1987) (2016)
Jung In Kim, Hyung-Geun Park, Kwang-Hyeon Chang, D H Nam, Min-Kyeong Yeo

In the present study, replicated paddy microcosm systems were used to investigate the environmental fate and trophic transfer of titanium nanoparticles (NPs) over a period of 14 days. Most TiO2 NPs immediately settled down in the sediment, and high accumulations of nano TiO2 in the sandy loam sediment and biofilm were observed. The test organisms (quillworts, water dropworts, duckweeds, biofilms, river snails, and Chinese muddy loaches) and environmental media (freshwater, sandy loam sediment) were exposed to sequential low doses (2 mg/L at 1 h, 4 days, and 9 days) or a single high-dose (6 mg/L) of TiO2 NPs. The bioconcentration factors (BCFs) of nano-TiO2 in biofilms, quillworts, duckweeds, and Chinese muddy loaches were higher in the sequential multi-dose group than in the single-dose group. Chinese muddy loaches showed higher bioaccumulation factors (BAFs) over their prey than river snails. The difference in the carbon isotope ratios between Chinese muddy loaches and river snails was less than 2‰, and an approximately 4‰ difference in the stable nitrogen isotope ratio was observed in the two aquatic predators from their major prey (e.g., biofilms or particulate organic matter). The trophic levels between biofilms and river snails and between biofilms and Chinese muddy loaches were 2.8 and 2.4 levels, respectively. These results indicate that these two predators consumed biofilm and other alternative preys at a higher level than biofilm. Although the trophic transfer rates of TiO2 are generally low, relatively higher biomagnification factors (BMFs) were found in Chinese muddy loaches (0.04-0.05) than in river snails (0.01-0.02). These results suggest that TiO2 NPs show greater movement in the sediment than in the water and that TiO2 NPs can be retained through aquatic food chains more after a sequential low-dose exposure than after a single high-dose exposure.

Records of bulk organic matter and plant pigments in sediment of the “red-tide zone” adjacent to the Changjiang River estuary
Chinese Journal of Oceanology and Limnology (2016)
Zhenjun Kang, Rencheng Yu, Fanzhou Kong, Yunfeng Wang, Yan Gao, Jianhua Chen, Wei Guo, Mingjiang Zhou

Cultural eutrophication caused by nutrient over-enrichment in coastal waters will lead to a cascading set of ecosystem changes and deleterious ecological consequences, such as harmful algal blooms (HABs) and hypoxia. During the past two decades since the late 1990s, recurrent large-scale HABs (red tides) and an extensive hypoxic zone have been reported in the coastal waters adjacent to the Changjiang River estuary. To retrieve the history of eutrophication and its associated ecosystem changes, a sediment core was collected from the “red-tide zone” adjacent to the Changjiang River estuary. The core was dated using the 210Pb radioisotope and examined for multiple proxies, including organic carbon (OC), total nitrogen (TN), stable isotopes of C and N, and plant pigments. An apparent up-core increase of OC content was observed after the 1970s, accompanied by a rapid increase of TN. The concurrent enrichment of δ13C and increase of the C/N ratio suggested the accumulation of organic matter derived from marine primary production during this stage. The accumulation of OC after the 1970s well reflected the significant increase of primary production in the red-tide zone and probably the intensification of hypoxia as well. Plant pigments, including chlorophyll a, β-carotene, and diatoxanthin, showed similar patterns of variation to OC throughout the core, which further confirmed the important contribution of microalgae, particularly diatoms, to the deposited organic matter. Based on the variant profiles of the pigments representative of different microalgal groups, the potential changes of the phytoplankton community since the 1970s were discussed.
Schlagworte: C , N , ec , oc , po , EA