• UNDERSTAND

    Future Climate Scenarios

  • UNDERSTAND

    Sources of GHGs

  • UNDERSTAND

    Paleothermometers

Klimaforschung

Der Klimawandel ist eine der größten Bedrohungen der menschlichen Zivilisation. Klimaszenarien der Zukunft können nur auf Basis dessen berechnet werden, was wir über die Vergangenheit wissen. Durch das Verständnis der Variabilität des Klimas und der Mechanismen, welche die globalen Klimakreisläufe beeinflussen, sind Wissenschaftler in der Lage, anspruchsvolle Modelle unseres zukünftigen Klimas zu entwickeln und liefern entscheidende Informationen für die Öffentlichkeit und Regierungen über mögliche Konsequenzen anthropogener Aktivitäten.

Die Stabilisotopenanalyse fungiert als ein virtuelles Paläothermometer, an dem vergangene Temperaturen von einer Vielzahl von Materialien wie Mikrofossilien, Eisbohrkernen und Baumringen abgelesen werden können. Durch das Kombinieren dieser Temperaturinformationen und der Extrapolation der Daten in die Zukunft sind wir in der Lage, die schlimmsten Auswirkungen des Klimawandels zu verhindern. Die Stabilisotopenanalyse wird eine entscheidene Rolle spielen, uns dabei zu helfen.

Carbonate

Klimasignale liegen am Meeresgrund in Form von sedimentierten Carbonaten altertümlicher Biota vor. Die 13C and 18O Isotopenverhältnisse dieser Materialien stehen in direktem Zusammenhang mit der Meerestemperatur und dem Zeitraum ihrer Existenz. Unser Dual Inlet System, ausgestattet mit MultiCarb, ist in der Lage, 13C and 18O Analysen von extrem kleinen Proben mit der höchsten Präzision durchzuführen, und ermöglicht die aufregend neue "clumped isotope" Analysenmethode.

» MultiCarb

Wasseranalyse aus Eisbohrkernen

Das Isotopenverhältnis des Niederschlags ist abhängig von der Temperatur der Ozeane, aus denen das Wasser verdunstet. Eisbohrkerne aus den arktischen und antarktischen Polarregionen haben die Variation der Isotope über Jahrtausende aufgezeichnet und ermöglichen es, die Temperatur zu dem Zeitpunkt zu rekonstruieren, als das Eis entstand. Verglichen mit anderen Techniken ist unser AquaPrep ist in der Lage, höchste 18O und 2H Analysen durchzuführen, was Unsicherheiten in Ihren Temperaturproxyberechnungen reduziert.

» AquaPrep

Treibhausgase

Treibhausgase in der Atmosphäre sind die Haupttreiber des Klimawandels. Um die Mechanismen des Klimawandels zu verstehen, ist die Entkopplung des anthropogenen Beitrags dieser Gase in die Atmosphäre von solchen, die das Ergebnis natürlicher Prozesse sind, entscheidend. Mit iso FLOW können die Isotopenverhältnisse der wichtigsten Treibhausgase CO2, N2O und CH4 in atmosphärischen Gasproben untersucht werden. Die Ergebnisse dieser Analysen können dabei helfen, Strategien zum Umgang mit dem Klimawandel zu entwickeln.

Publikationen zum Thema Klimawandel mit unseren Geräten

Unsere Kunden nutzen unsere Geräte für erstaunliche Forschungsprojekte zum Thema Klimawandel. Um Ihnen zu zeigen, wie unsere Kunden ihre Forschung durchführen und wie unsere IRMS-Geräte eingesetzt werden, haben wir eine Reihe von Fachpublikationen gesammelt, die unsere Produkte namentlich nennen. Die Informationen zu diesen Fachartikeln finden Sie unten. Durch Klicken auf den Link werden Sie zur Website des jeweiligen Zeitschriftenverlags weitergeleitet, wo Sie die Publikation herunterladen können.

Wenn Sie unsere Publikationsdatenbank durchsuchen möchten oder die Liste der Ergebnisse an sich selbst oder an Ihre Kollegen mailen möchten, dann werfen Sie einen Blick auf unsere gesamte Publikationsdatenbank.

115 Ergebnisse:

Source identification and distribution reveals the potential of the geochemical Antarctic sea ice proxy IPSO25
Nature Communications (2016)
S. T. Belt, L. Smik, T. A. Brown, J.-H. Kim, S. J. Rowland, C. S. Allen, J.-K. Gal, K.-H. Shin, J. I. Lee, K. W. R. Taylor, C. Parkinson, D. Cavalieri, J. Turner, S. Stammerjohn, R. Massom, D. Rind, D. Martinson, J. Turner, T. J. Bracegirdle, T. Phillips,

The presence of a di-unsaturated highly branched isoprenoid (HBI) lipid biomarker (diene II) in Southern Ocean sediments has previously been proposed as a proxy measure of palaeo Antarctic sea ice. Here we show that a source of diene II is the sympagic diatom Berkeleya adeliensis Medlin. Furthermore, the propensity for B. adeliensis to flourish in platelet ice is reflected by an offshore downward gradient in diene II concentration in >100 surface sediments from Antarctic coastal and near-coastal environments. Since platelet ice formation is strongly associated with super-cooled freshwater inflow, we further hypothesize that sedimentary diene II provides a potentially sensitive proxy indicator of landfast sea ice influenced by meltwater discharge from nearby glaciers and ice shelves, and re-examination of some previous diene II downcore records supports this hypothesis. The term IPSO25—Ice Proxy for the Southern Ocean with 25 carbon atoms—is proposed as a proxy name for diene II.
Schlagworte: geol , clim , gaschrom

Sensitivity of soil carbon fractions and their specific stabilization mechanisms to extreme soil warming in a subarctic grassland
Global Change Biology (2016)
Christopher Poeplau, Thomas Kätterer, Niki I. W. Leblans, Bjarni D. Sigurdsson

Terrestrial carbon cycle feedbacks to global warming are major uncertainties in climate models. For in-depth understanding of changes in soil organic carbon (SOC) after soil warming, long-term responses of SOC stabilization mechanisms such as aggregation, organo-mineral interactions and chemical recalcitrance need to be addressed. This study investigated the effect of 6 years of geothermal soil warming on different SOC fractions in an unmanaged grassland in Iceland. Along an extreme warming gradient of +0 to ~+40 °C, we isolated five fractions of SOC that varied conceptually in turnover rate from active to passive in the following order: particulate organic matter (POM), dissolved organic carbon (DOC), SOC in sand and stable aggregates (SA), SOC in silt and clay (SC-rSOC) and resistant SOC (rSOC). Soil warming of 0.6 °C increased bulk SOC by 22 ± 43% (0–10 cm soil layer) and 27 ± 54% (20–30 cm), while further warming led to exponential SOC depletion of up to 79 ± 14% (0–10 cm) and 74 ± 8% (20–30) in the most warmed plots (~+40 °C). Only the SA fraction was more sensitive than the bulk soil, with 93 ± 6% (0–10 cm) and 86 ± 13% (20–30 cm) SOC losses and the highest relative enrichment in 13C as an indicator for the degree of decomposition (+1.6 ± 1.5‰ in 0–10 cm and +1.3 ± 0.8‰ in 20–30 cm). The SA fraction mass also declined along the warming gradient, while the SC fraction mass increased. This was explained by deactivation of aggregate-binding mechanisms. There was no difference between the responses of SC-rSOC (slow-cycling) and rSOC (passive) to warming, and 13C enrichment in rSOC was equal to that in bulk soil. We concluded that the sensitivity of SOC to warming was not a function of age or chemical recalcitrance, but triggered by changes in biophysical stabilization mechanisms, such as aggregation.
Schlagworte: carbon , soil , clim , elem

Clumped isotope composition of cold-water corals: A role for vital effects?
Geochimica et Cosmochimica Acta (2016)
Peter T. Spooner, Weifu Guo, Laura F. Robinson, Nivedita Thiagarajan, Katharine R. Hendry, Brad E. Rosenheim, Melanie J. Leng

The carbonate clumped isotope thermometer is a promising tool for determining past ocean temperatures. It is based on the temperature dependence of rare isotopes ‘clumping’ into the same carbonate ion group in the carbonate mineral lattice. The extent of this clumping effect is independent of the isotope composition of the water from which carbonate precipitates, providing unique advantages over many other paleotemperature proxies. Existing calibrations of this thermometer in cold-water and warm-water corals suggest clumped isotope ‘vital effects’ are negligible in cold-water corals but may be significant in warm-water corals. Here, we test the calibration of the carbonate clumped isotope thermometer in cold-water corals with a recently collected and well characterised sample set spanning a range of coral genera (Balanophyllia, Caryophyllia, Dasmosmilia, Desmophyllum, Enallopsammia and Javania). The clumped isotope compositions (Δ47) of these corals exhibit systematic dependences on their growth temperatures, confirming the basis of the carbonate clumped isotope thermometer. However, some cold-water coral genera show Δ47 values that are higher than the expected equilibrium values by up to 0.05‰ (equivalent to underestimating temperature by ∼9°C) similar to previous findings for some warm-water corals. This finding suggests that the vital effects affecting corals Δ47 are common to both warm- and cold-water corals. By comparison with models of the coral calcification process we suggest that the clumped isotope offsets in these genera are related to the kinetic isotope effects associated with CO2 hydration/hydroxylation reactions in the corals’ calcifying fluid. Our findings complicate the use of the carbonate clumped isotope thermometer in corals, but suggest that species- or genus-specific calibrations could be useful for the future application of this paleotemperature proxy.

North Atlantic forcing of moisture delivery to Europe throughout the Holocene
Scientific Reports (2016)
Andrew C. Smith, Peter M. Wynn, Philip A. Barker, Melanie J. Leng, Stephen R. Noble, Wlodek Tych, A. Baker, C. Hellstrom, J. Kelly, G. B. F. J. Mariethoz, V. Trouet, W. J. Fletcher, M. Debret, M. F. Sanchez Goni, G. Bond, J. W. Hurrell, G. H. Denton, W. K

Century-to-millennial scale fluctuations in precipitation and temperature are an established feature of European Holocene climates. Changes in moisture delivery are driven by complex interactions between ocean moisture sources and atmospheric circulation modes, making it difficult to resolve the drivers behind millennial scale variability in European precipitation. Here, we present two overlapping decadal resolution speleothem oxygen isotope (δ18O) records from a cave on the Atlantic coastline of northern Iberia, covering the period 12.1–0 ka. Speleothem δ18O reveals nine quasi-cyclical events of relatively wet-to-dry climatic conditions during the Holocene. Dynamic Harmonic Regression modelling indicates that changes in precipitation occurred with a ~1500 year frequency during the late Holocene and at a shorter length during the early Holocene. The timing of these cycles coincides with changes in North Atlantic Ocean conditions, indicating a connectivity between ocean conditions and Holocene moisture delivery. Early Holocene climate is potentially dominated by freshwater outburst events, whilst ~1500 year cycles in the late Holocene are more likely driven by changes internal to the ocean system. This is the first continental record of its type that clearly demonstrates millennial scale connectivity between the pulse of the ocean and precipitation over Europe through the entirety of the Holocene.
Schlagworte: oxygen , clim , mulitcarb

Mid Pleistocene foraminiferal mass extinction coupled with phytoplankton evolution
Nature Communications (2016)
Sev Kender, Erin L. McClymont, Aurora C. Elmore, Dario Emanuele, Melanie J. Leng, Henry Elderfield, P. U. Clark, H. Elderfield, E. L. McClymont, S. M. Sosdian, A. Rosell-Melé, Y. Rosenthal, B. W. Hayward, B. W. Hayward, S. Hess, W. Kuhnt, E. Thomas, N. Ma

Understanding the interaction between climate and biotic evolution is crucial for deciphering the sensitivity of life. An enigmatic mass extinction occurred in the deep oceans during the Mid Pleistocene, with a loss of over 100 species (20%) of sea floor calcareous foraminifera. An evolutionarily conservative group, benthic foraminifera often comprise >50% of eukaryote biomass on the deep-ocean floor. Here we test extinction hypotheses (temperature, corrosiveness and productivity) in the Tasman Sea, using geochemistry and micropalaeontology, and find evidence from several globally distributed sites that the extinction was caused by a change in phytoplankton food source. Coccolithophore evolution may have enhanced the seasonal ‘bloom’ nature of primary productivity and fundamentally shifted it towards a more intra-annually variable state at ∼0.8 Ma. Our results highlight intra-annual variability as a potential new consideration for Mid Pleistocene global biogeochemical climate models, and imply that deep-sea biota may be sensitive to future changes in productivity.
Schlagworte: oxygen , clim , mulitcarb

Methane oxidation coupled to oxygenic photosynthesis in anoxic waters
The ISME Journal (2015)
Jana Milucka, Mathias Kirf, Lu Lu, Andreas Krupke, Phyllis Lam, Sten Littmann, Marcel Mm Kuypers, Carsten J Schubert

Freshwater lakes represent large methane sources that, in contrast to the Ocean, significantly contribute to non-anthropogenic methane emissions to the atmosphere. Particularly mixed lakes are major methane emitters, while permanently and seasonally stratified lakes with anoxic bottom waters are often characterized by strongly reduced methane emissions. The causes for this reduced methane flux from anoxic lake waters are not fully understood. Here we identified the microorganisms and processes responsible for the near complete consumption of methane in the anoxic waters of a permanently stratified lake, Lago di Cadagno. Interestingly, known anaerobic methanotrophs could not be detected in these waters. Instead, we found abundant gamma-proteobacterial aerobic methane-oxidizing bacteria active in the anoxic waters. In vitro incubations revealed that, among all the tested potential electron acceptors, only the addition of oxygen enhanced the rates of methane oxidation. An equally pronounced stimulation was also observed when the anoxic water samples were incubated in the light. Our combined results from molecular, biogeochemical and single-cell analyses indicate that methane removal at the anoxic chemocline of Lago di Cadagno is due to true aerobic oxidation of methane fuelled by in situ oxygen production by photosynthetic algae. A similar mechanism could be active in seasonally stratified lakes and marine basins such as the Black Sea, where light penetrates to the anoxic chemocline. Given the widespread occurrence of seasonally stratified anoxic lakes, aerobic methane oxidation coupled to oxygenic photosynthesis might have an important but so far neglected role in methane emissions from lakes.

Jurassic climate mode governed by ocean gateway
Nature Communications (2015)
Christoph Korte, Stephen P. Hesselbo, Clemens V. Ullmann, Gerd Dietl, Micha Ruhl, Günter Schweigert, Nicolas Thibault

The Jurassic (~201–145 Myr ago) was long considered a warm ‘greenhouse’ period; more recently cool, even ‘icehouse’ episodes have been postulated. However, the mechanisms governing transition between so-called Warm Modes and Cool Modes are poorly known. Here we present a new large high-quality oxygen-isotope dataset from an interval that includes previously suggested mode transitions. Our results show an especially abrupt earliest Middle Jurassic (~174 Ma) mid-latitude cooling of seawater by as much as 10 °C in the north–south Laurasian Seaway, a marine passage that connected the equatorial Tethys Ocean to the Boreal Sea. Coincidence in timing with large-scale regional lithospheric updoming of the North Sea region is striking, and we hypothesize that northward oceanic heat transport was impeded by uplift, triggering Cool Mode conditions more widely. This extreme climate-mode transition provides a counter-example to other Mesozoic transitions linked to quantitative change in atmospheric greenhouse gas content.
Schlagworte: carbon , oxygen , geol , clim , mulitcarb

The interaction of biotic and abiotic factors at multiple spatial scales affects the variability of CO2 fluxes in polar environments
Polar Biology (2015)
N. Cannone, A. Augusti, F. Malfasi, E. Pallozzi, C. Calfapietra, E. Brugnoli

Climate change may turn Arctic biomes from carbon sinks into sources and vice versa, depending on the balance between gross ecosystem photosynthesis, ecosystem respiration (ER) and the resulting net ecosystem exchange (NEE). Photosynthetic capacity is species specific, and thus, it is important to quantify the contribution of different target plant species to NEE and ER. At Ny Ålesund (Svalbard archipelago, Norway), we selected different Arctic tundra plant species and measured CO2 fluxes at plot scale and photosynthetic capacity at leaf scale. We aimed to analyze trends in CO2 fluxes during the transition seasons (beginning vs. end of the growing season) and assess which abiotic (soil temperature, soil moisture, PAR) and biotic (plot type, phenology, LAI, photosynthetic capacity) factors influenced CO2 emissions. NEE and ER differed between vegetation communities. All communities acted as CO2 sources, with higher source strength at the beginning than at the end of the growing season. The key factors affecting NEE were soil temperature, LAI and species-specific photosynthetic capacities, coupled with phenology. ER was always influenced by soil temperature. Measurements of photosynthetic capacity indicated different responses among species to light intensity, as well as suggesting possible gains in response to future increases in atmospheric CO2 concentrations. Species-specific adaptation to low temperatures could trigger significant feedbacks in a climate change context. Our data highlight the need to quantify the role of dominant species in the C cycle (sinks or sources), as changes of vegetation composition or species phenology in response to climate change may have great impact on the regional CO2 balance.
Schlagworte: carbon , geol , clim , elem

ISOTOPIC ANALYSIS OF JURASSIC ( CALLOVIAN ) MOLLUSKS FROM THE CHRISTIAN MALFORD ¨ TTE ( UK ): IMPLICATIONS FOR OCEAN WATER TEMPERATURE ESTIMATES BASED ON BELEMNOIDS
PALAIOS (2015)
Gregory D Price, Malcolm B Hart, Philip R Wilby, Kevin N Page

Isotopic data (C and O) derived from Callovian (Middle Jurassic) mollusks (bivalves, ammonites and belemnoids, including true belemnites and Belemnotheutis) are presented from a narrow stratigraphic interval in the Christian Malford Lagerstätte, UK. The exceptionally well-preserved mollusks include aragonite-calcite pairs precipitated by individual belemnite animals that enable an assessment of possible “vital” effects and the reliability of using belemnite calcite to determine ocean water compositions. The oxygen isotope data derived from the calcitic rostra of the belemnites (Cylindroteuthis) show modest variability, ranging from −1.2 to 0.9‰ (V-PDB), while their accompanying aragonitic phragmocones range from −1.4 to 0.0‰. Data derived from the ammonite Kosmoceras show some scatter, with oxygen isotope values varying from −3.6 to −0.2‰. The aragonite data from Cylindroteuthis, Kosmoceras and Belemnotheutis all overlap, suggesting they inhabited similar (surface) water depths. However, the corresponding data from the calcitic rostra of the Cylindroteuthis specimens suggest temperatures ∼ 5°C cooler. As we have analyzed aragonite-calcite pairs, the discrepancy cannot be explained by environmental effects. Though clearly a vital effect, it is difficult to resolve whether the temperatures derived from the aragonite (phragmocone) are too warm or from the calcite (rostrum) are too cool. Consequently, the applicability of standard paleotemperature equations to Cylindroteuthid belemnite rostra remains unproven. Sequentially sampled ontogenetic isotope data derived from Belemnotheutis phragmocones reveal only modest δ18O variation, consistent with limited movement between warmer (shallower) and cooler (deeper) waters. A coincidental systematic pattern of δ13C enrichment may signal changes in metabolic activity associated with a shift in ecology or feeding with age
Schlagworte: carbon , oxygen , geol , clim , gashead

CO2 Emission from Geothermal Power Plants in Turkey
Proceedings World Geothermal Congress 2015 (2015)
Niyazi Aksoy, Ozge Solak Gok, Halim Mutlu, Gizem Kılınc

Geothermal energy has been accepted as a clean and sustainable source of energy. However, the emission of dissolved CO2 from geothermal water becomes more of an issue recently. Emissions from Turkish geothermal fields amounts to 1800 gr/kWh which is nearly two times more than the emission of coal burning plants. High CO2 emissions can cost the geothermal energy sector carbon taxes of up to 4.5 ¢/kWh. The present study discusses CO2 emissions from geothermal-based power plants in accordance with the data obtained from the plants and literature.
Schlagworte: carbon , clim , gaschrom