IRMS Anwendungen
    in der Forschung

Eine Welt voller Anwendungen

Entdecken Sie die vielfältigen Anwendungsmöglichkeiten von IRMS in der Forschung

Unsere Kunden nutzen unsere Geräte für erstaunliche Forschungsprojekte. Über eine große Bandbreite an Applikationsbereichen wird die Stabilisotopenanalyse (IRMS) eingesetzt, um die Mikro- und Makro-Kreisläufe der Elemente Kohlenstoff, Sauerstoff, Stickstoff, Wasserstoff und Schwefel in komplexen chemischen, physischen und biologischen Prozessen zu untersuchen und verstehen.

Wir haben großes Interesse an der Forschung unserer Kunden und sind stolz, dass mit Hilfe unserer Geräte kontinuierlich neue Forschungsergebnisse erzielt werden und unser kollektives Wissen erweitert wird. Mit über 600 installierten IRMS Geräten weltweit werden regelmäßig neue Publikationen veröffentlicht. Auf dieser Seite finden Sie einen Auszug der neuesten Veröffentlichungen, die sich auf unsere IRMS Systeme beziehen.

Wenn Sie gerne mit uns erörtern möchten, ob IRMS auch in Ihrem Forschungsgebiet sinnvoll eingesetzt werden kann, oder wenn Sie Ihre Veröffentlichung, in der Sie eines unserer Geräte zur Datenakquisition genutzt haben, zu unserer Datenbank hinzufügen möchten, dann zögern Sie nicht, uns zu kontaktieren.


824 Ergebnisse:

Carbon dioxide, ground air and carbon cycling in Gibraltar karst
Geochimica et Cosmochimica Acta (2016)
D.P. Mattey, T.C. Atkinson, J.A. Barker, R. Fisher, J-P. Latin, R. Durell, M. Ainsworth

We put forward a general conceptual model of CO2 behaviour in the vadose zone of karst aquifers, based on physical principles of air flow through porous media and caves, combined with a geochemical interpretation of cave monitoring data. This ‘Gibraltar model’ links fluxes of water, air and carbon through the soil with the porosity of the vadose zone, the circulation of ground air and the ventilation of caves. Gibraltar hosts many natural caves whose locations span the full length and vertical range of the Rock. We report results of an 8-year monitoring study of carbon in soil organic matter and bedrock carbonate, dissolved inorganic carbon in vadose waters, and gaseous CO2 in soil, cave and ground air. Results show that the regime of cave air CO2 results from the interaction of cave ventilation with a reservoir of CO2-enriched ground air held within the smaller voids of the bedrock. The pCO2 of ground air, and of vadose waters that have been in close contact with it, are determined by multiple factors that include recharge patterns, vegetation productivity and root respiration, and conversion of organic matter to CO2 within the soil, the epikarst and the whole vadose zone. Mathematical modelling and field observations show that ground air is subject to a density-driven circulation that reverses seasonally, as the difference between surface and underground temperatures reverses in sign. The Gibraltar model suggests that cave air pCO2 is not directly related to CO2 generated in the soil or the epikarstic zone, as is often assumed. Ground air CO2 formed by the decay of organic matter (OM) washed down into the deeper unsaturated zone is an important additional source of pCO2. In Gibraltar the addition of OM-derived CO2 is the dominant control on the pCO2 of ground air and the Ca-hardness of waters within the deep vadose zone. The seasonal regime of CO2 in cave air depends on the position of a cave in relation to the density-driven ground air circulation pattern which is itself determined by the topography, as well as by the high-permeability conduits for air movement provided by caves themselves. In the steep topography of Gibraltar, caves in the lower part of the Rock act as outflow conduits for descending ground air in summer, and so have higher pCO2 in that season. Caves in the upper Rock have high pCO2 in winter, when they act as outflow conduits for rising currents of CO2-enriched ground air. Understanding seasonal flows of ground air in the vadose zone, together with the origins and seasonal regimes of CO2 in cave air underpins robust interpretation of speleothem-based climate proxy records.

Short-term fasts increase levels of halogenated flame retardants in tissues of a wild incubating bird.
Environmental research (2016)
Sarah C Marteinson, Ken G Drouillard, Jonathan Verreault

Many species are adapted for fasting during parts of their life cycle. For species undergoing extreme fasts, lipid stores are mobilized and accumulated contaminants can be released to exert toxicological effects. However, it is unknown if short-term fasting events may have a similar effect. The objective of this study was to determine if short successive fasts are related to contaminant levels in liver and plasma of birds. In ring-billed gulls (Larus delawarensis), both members of the pair alternate between incubating the nest for several hours (during which they fast) and foraging, making them a useful model for examining this question. Birds were equipped with miniature data loggers recording time and GPS position for two days to determine the proportion and duration of time birds spent in these two activities. Liver and plasma samples were collected, and halogenated flame retardants (HFRs) (PBDEs and dechlorane plus) and organochlorines (OCs) (PCBs, DDTs, and chlordane-related compounds) were determined. Most birds (79%) exhibited plasma lipid content below 1%, indicating a likely fasted state, and plasma lipid percent declined with the number of hours spent at the nest site. The more time birds spent at their nest site, the higher were their plasma and liver concentrations of HFRs. However, body condition indices were unrelated to either the amount of time birds fasted at the nest site or contaminant levels, suggesting that lipid mobilization might not have been severe enough to affect overall body condition of birds and to explain the relationship between fasting and HFR concentrations. A similar relationship between fasting and OC levels was not observed, suggesting that different factors are affecting short-term temporal variations in concentrations of these two classes of contaminants. This study demonstrates that short fasts can be related to increased internal contaminant exposure in birds and that this may be a confounding factor in research and monitoring involving tissue concentrations of HFRs in wild birds.

Open system sulphate reduction in a diagenetic environment – isotopic analysis of barite (δ34S and δ18O) and pyrite (δ34S) from the Tom and Jason Late Devonian Zn-Pb-Ba deposits, Selwyn Basin, Canada
Geochimica et Cosmochimica Acta (2016)
J.M. Magnall, S.A. Gleeson, R.A. Stern, R.J. Newton, S.W. Poulton, S. Paradis

Highly positive δ34S values in sulphide minerals are a common feature of shale hosted massive sulphide deposits (SHMS). Often this is attributed to near quantitative consumption of seawater sulphate, and for Paleozoic strata of the Selwyn Basin (Canada), this is thought to occur during bacterial sulphate reduction (BSR) in a euxinic water column. In this study, we focus on drill-core samples of sulphide and barite mineralisation from two Late Devonian SHMS deposits (Tom and Jason, Macmillan Pass, Selwyn Basin). The paragenetic relationship between barite, pyrite and hydrothermal base metal sulphides has been determined using transmitted and reflected light microscopy, and backscatter electron imaging. The petrographic framework provides context for in-situ isotopic microanalysis (secondary ion mass spectrometry; SIMS) of barite and pyrite. These data are supplemented by analyses of δ34S values for bulk rock pyrite (n = 37) from drill-core samples of un-mineralised (barren), siliceous mudstone, to provide a means by which to evaluate the mass balance of sulphur in the host rock. Three generations of barite have been identified, all of which pre-date hydrothermal input. Isotopically, the three generations of barite have overlapping distributions of δ34S and δ18O values (+22.5‰ to +33.0‰ and +16.4‰ to +18.3‰, respectively) and are consistent with an origin from modified Late Devonian seawater. Radiolarian tests, enriched in barium, are abundant within the siliceous mudstones, providing evidence that primary barium enrichment was associated with biologic activity. We therefore propose that barite formed following remobilisation of productivity-derived barium within the sediment, and precipitated within diagenetic pore fluids close to the sediment water interface. Two generations of pyrite are texturally associated with barite: framboidal pyrite (py-I), which has negative δ34S values (-23‰ to -28‰; n = 9), and euhedral pyrite (py-II), which has markedly more positive δ34S values (+8‰ to +26‰; n = 86). We argue that stratiform pyrite and barite developed along diagenetic redox fronts, where the isotopic relationships (δ34Spyrite ≈ δ34Sbarite) are explained by anaerobic oxidation of methane coupled to sulphate reduction (AOM-SR). Furthermore, the relatively narrow distribution of δ34Sbarite values are consistent with an open system model of sulphate reduction, in which reduced sulphur generation occurs predominantly via AOM-SR. Importantly, hydrothermal sulphides (pyrite, sphalerite and galena) all post-date this diagenetic barite-pyrite assemblage, and textural and mineralogical evidence indicates barite replacement to be an important process during hydrothermal mineralisation. Neither the textures nor the documented isotopic relationships can be produced by processes operating in a euxinic water column, which represents a major departure from the conventional model for SHMS at Macmillan Pass. We suggest that positive δ34S values in sulphides, a common feature of SHMS systems both in the Selwyn Basin and throughout the geologic record, could be linked to AOM-SR. At Macmillan Pass, positive δ34Spyrite values developed during open system diagenesis, which was critical for rapid sulphur cycling and the development of an effective metal trap.

Establishment of the soil water potential threshold to trigger irrigation of Kyoho grapevines based on berry expansion, photosynthetic rate and photosynthetic product allocation
Australian Journal of Grape and Wine Research (2016)
Y. Lou, Y. Miao, Z. Wang, L. Wang, J. Li, C. Zhang, W. Xu, M. Inoue, S. Wang

rrigation is an important management practice in viticulture. Irrigation scheduling established by previous researchers was based mainly on the irrigation level for optimal berry composition and size at harvest. Because eventual berry size and composition depend on the accumulation of daily growth, a more precise study must be implemented to establish the soil water potential (ψsoil) threshold to trigger irrigation at different development stages of the berry.
Schlagworte: C , fo , soi , EA

Streptomyces thermoautotrophicus does not fix nitrogen
Scientific Reports (2016)
Drew MacKellar, Lucas Lieber, Jeffrey S. Norman, Anthony Bolger, Cory Tobin, James W. Murray, Mehtap Oksaksin, Roger L. Chang, Tyler J. Ford, Peter Q. Nguyen, Jimmy Woodward, Hugo R. Permingeat, Neel S. Joshi, Pamela A. Silver, Björn Usadel, Alfred W. Rut

Streptomyces thermoautotrophicus UBT1 has been described as a moderately thermophilic chemolithoautotroph with a novel nitrogenase enzyme that is oxygen-insensitive. We have cultured the UBT1 strain, and have isolated two new strains (H1 and P1-2) of very similar phenotypic and genetic characters. These strains show minimal growth on ammonium-free media, and fail to incorporate isotopically labeled N2 gas into biomass in multiple independent assays. The sdn genes previously published as the putative nitrogenase of S. thermoautotrophicus have little similarity to anything found in draft genome sequences, published here, for strains H1 and UBT1, but share >99% nucleotide identity with genes from Hydrogenibacillus schlegelii, a draft genome for which is also presented here. H. schlegelii similarly lacks nitrogenase genes and is a non-diazotroph. We propose reclassification of the species containing strains UBT1, H1, and P1-2 as a non-Streptomycete, non-diazotrophic, facultative chemolithoautotroph and conclude that the existence of the previously proposed oxygen-tolerant nitrogenase is extremely unlikely.

Urea and lipid extraction treatment effects on δ(15) N and δ(13) C values in pelagic sharks.
Rapid communications in mass spectrometry : RCM (2016)
Yunkai Li, Yuying Zhang, Nigel E Hussey, Xiaojie Dai

RATIONALE: Stable isotope analysis (SIA) provides a powerful tool to investigate diverse ecological questions for marine species, but standardized values are required for comparative assessments. For elasmobranchs, their unique osmoregulatory strategy involves retention of (15) N-depleted urea in body tissues and this may bias δ(15) N values. This may be a particular problem for large predatory species, where δ(15) N discrimination between predator and consumed prey can be small. METHODS: We evaluated three treatments (deionized water rinsing [DW], chloroform/methanol [LE] and combined chloroform/methanol and deionized water rinsing [LE+DW]) applied to white muscle tissue of 125 individuals from seven pelagic shark species to (i) assess urea and lipid effects on stable isotope values determined by IRMS and (ii) investigate mathematical normalization of these values. RESULTS: For all species examined, the δ(15) N values and C:N ratios increased significantly following all three treatments, identifying that urea removal is required prior to SIA of pelagic sharks. The more marked change in δ(15) N values following DW (1.3 ± 0.4‰) and LE+DW (1.2 ± 0.6‰) than following LE alone (0.7 ± 0.4‰) indicated that water rinsing was more effective at removing urea. The DW and LE+DW treatments lowered the %N values, resulting in an increase in C:N ratios from the unexpected low values of <2.6 in bulk samples to ~3.1 ± 0.1, the expected value of protein. The δ(13) C values of all species also increased significantly following LE and LE+DW treatments. CONCLUSIONS: Given the mean change in δ(15) N (1.2 ± 0.6‰) and δ(13) C values (0.7 ± 0.4‰) across pelagic shark species, it is recommended that muscle tissue samples be treated with LE+DW to efficiently extract both urea and lipids to standardize isotopic values. Mathematical normalization of urea and lipid-extracted δ(15) NLE+DW and δ(13) CLE+DW values using the lipid-extracted δ(15) NLE and δ(13) CLE data were established for all pelagic shark species. Copyright © 2015 John Wiley & Sons, Ltd.
Schlagworte: C , N , ec , EA

Early Holocene palaeoseasonality inferred from the stable isotope composition of Unio shells from Çatalhöyük, Turkey
Environmental Archaeology (2016)
Jonathan P. Lewis, Melanie J. Leng, Jonathan R. Dean, Arkadiusz Marciniak, Daniella E. Bar-Yosef Mayer, Xiaohong Wu

Seasonal δ13C and δ18O data are presented from 14 Unio sub-fossil shells unearthed at the archaeological site of Çatalhöyük in central Turkey, spanning the occupation period ca. 9150–8000 cal years BP. The shells likely lived in the small lakes/wetlands around the site before being gathered and taken to Çatalhöyük. Wet-dry seasonal cycles are clearly apparent in the δ18Oshell profiles with low winter values reflecting winter precipitation and high δ18O in the summer resulting from evaporation. The most striking trend in the δ18O data is the drop in maximum summer δ18O ca. 8300 years BP, which we infer as indicating lower summer evaporation and hence a reduction in seasonality. Previous palaeoclimate records from the area have suggested cooler and more arid conditions, with reduced precipitation, around this time. While the drop in summer δ18O values could be due to reduced summer temperatures reducing summer evaporation, but there was little change in winter δ18O, perhaps suggesting winter growth cessatio...

Biodegradability of algal-derived organic matter in a large artificial lake by using stable isotope tracers.
Environmental science and pollution research international (2016)
Yeonjung Lee, Bomi Lee, Jin Hur, Jun-Oh Min, Sun-Yong Ha, Kongtae Ra, Kyung-Tae Kim, Kyung-Hoon Shin

In order to understand the biodegradability of algal-derived organic matter, biodegradation experiments were conducted with (13)C and (15)N-labeled natural phytoplankton and periphytic algal populations in experimental conditions for 60 days. Qualitative changes in the dissolved organic matter were also determined using parallel factor analysis and the stable carbon isotopic composition of the hydrophobic dissolved organic matter through the experimental period. Although algal-derived organic matter is considered to be easily biodegradable, the initial amounts of total organic carbon newly produced by phytoplankton and periphytic algae remained approximately 16 and 44 % after 60 days, respectively, and about 22 and 43 % of newly produced particulate nitrogen remained. Further, the dissolved organic carbon derived from both algal populations increased significantly after 60 days. Although the dissolved organic matter gradually became refractory, the contributions of the algal-derived organic matter to the dissolved organic matter and hydrophobic dissolved organic matter increased. Our laboratory experimental results suggest that algal-derived organic matter produced by phytoplankton and periphytic algae could contribute significantly to the non-biodegradable organic matter through microbial transformations.
Schlagworte: C , N , soi , ec , po , EA

Carbon and hydrogen isotopic effects of stomatal density in Arabidopsis thaliana
Geochimica et Cosmochimica Acta (2016)
Hyejung Lee, Sarah J. Feakins, Leonel da S.L. Sternberg

Stomata are key gateways mediating carbon uptake and water loss from plants. Varied stomatal densities in fossil leaves raise the possibility that isotope effects associated with the openness of exchange may have mediated plant wax biomarker isotopic proxies for paleovegetation and paleoclimate in the geological record. Here we use Arabidopsis thaliana, a widely used model organism, to provide the first controlled tests of stomatal density on carbon and hydrogen isotopic compositions of cuticular waxes. Laboratory grown wildtype and mutants with suppressed and overexpressed stomatal densities allow us to directly test the isotope effects of stomatal densities independent of most other environmental or biological variables. Direct hydrogen isotope (H/D) measurements of plant waters and plant wax n-alkanes allow us to directly constrain the isotopic effects of leaf water isotopic enrichment via transpiration and biosynthetic fractionations, which together determine the net fractionation between irrigation water and n-alkane hydrogen isotopic composition. We also measure carbon isotopic fractionations of n-alkanes and bulk leaf tissue associated with different stomatal densities. We find offsets of +15‰ for δD and −3‰ for δ13C for the overexpressed mutant compared to the suppressed mutant. Since the range of stomatal densities expressed is comparable to that found in extant plants and the Cenozoic fossil record, the results allow us to consider the magnitude of isotope effects that may be incurred by these plant adaptive responses. This study highlights the potential of genetic mutants to isolate individual isotope effects and add to our fundamental understanding of how genetics and physiology influence plant biochemicals including plant wax biomarkers.

Water cycle and salinity dynamics in the mangrove forests of Europa and Juan de Nova Islands, southwest Indian Ocean
Rapid Communications in Mass Spectrometry (2016)
Luc Lambs, Perrine Mangion, Eric Mougin, François Fromard

Rationale: The functioning of mangrove forests found on small coralline islands is characterized by limited freshwater inputs. Here, we present data on the water cycling of such systems located on Europa and Juan de Nova Islands, Mozambique Channel. Methods: In order to better understand the water cycle and mangrove growth conditions, we have analysed the hydrological and salinity dynamics of the systems by gauge pressure and isotopic tracing (δ18O and δ2H values). Results: Both islands have important seawater intrusion as measured by the water level change and the high salinities in the karstic ponds. Europa Island displays higher salinity stress, with its inner lagoon, but presents a pluri-specific mangrove species formation ranging from shrub to forest stands. No freshwater signal could be detected around the mangrove trees. On Juan de Nova Island, the presence of sand and detrital sediment allows the storage of some amount of rainfall to form a brackish groundwater. The mangrove surface area is very limited with only small mono-specific stands being present in karstic depression. Conclusions: On the drier Europa Island, the salinity of all the water points is equal to or higher than that of the seawater, and on Juan de Nova the groundwater salinity is lower (5 to 20 PSU). This preliminary study shows that the karstic pothole mangroves exist due to the sea connection through the fractured coral and the high tidal dynamics.
Schlagworte: H , O , ge , oc , GH