• CITATION DATABASE
    IRMS Anwendungen
    in der Forschung

Eine Welt voller Anwendungen

Entdecken Sie die vielfältigen Anwendungsmöglichkeiten von IRMS in der Forschung

Unsere Kunden nutzen unsere Geräte für erstaunliche Forschungsprojekte. Über eine große Bandbreite an Applikationsbereichen wird die Stabilisotopenanalyse (IRMS) eingesetzt, um die Mikro- und Makro-Kreisläufe der Elemente Kohlenstoff, Sauerstoff, Stickstoff, Wasserstoff und Schwefel in komplexen chemischen, physischen und biologischen Prozessen zu untersuchen und verstehen.

Wir haben großes Interesse an der Forschung unserer Kunden und sind stolz, dass mit Hilfe unserer Geräte kontinuierlich neue Forschungsergebnisse erzielt werden und unser kollektives Wissen erweitert wird. Mit über 600 installierten IRMS Geräten weltweit werden regelmäßig neue Publikationen veröffentlicht. Auf dieser Seite finden Sie einen Auszug der neuesten Veröffentlichungen, die sich auf unsere IRMS Systeme beziehen.

Wenn Sie gerne mit uns erörtern möchten, ob IRMS auch in Ihrem Forschungsgebiet sinnvoll eingesetzt werden kann, oder wenn Sie Ihre Veröffentlichung, in der Sie eines unserer Geräte zur Datenakquisition genutzt haben, zu unserer Datenbank hinzufügen möchten, dann zögern Sie nicht, uns zu kontaktieren.


Filter

824 Ergebnisse:

Authigenic carbonate mounds from active methane seeps on the southern Aquitaine Shelf (Bay of Biscay, France): evidence for anaerobic oxidation of biogenic methane and submarine groundwater discharge during formation
Continental Shelf Research (2016)
Catherine Pierre, Jérome Demange, Marie-Madeleine Blanc-Valleron, Stéphanie Dupré

The widespread methane emissions that were discovered in 2013 on the Aquitaine Shelf at water depth between 140 and 220m are associated with authigenic carbonate crusts that cover meter-high subcircular reliefs of 10 to 100m in diameter. These authigenic carbonates are primarily aragonite plus calcite and dolomite, which cement the fine- to medium-grained sandy sediment. The carbonate cement is often pierced by numerous circular cavities of 5 to 10µm in diameter that are considered to be moulds of gas bubbles. Conversely, micron-sized cavities in the aragonite crystals are attributed to dissolution features, in relation to the production of CO2 during the aerobic oxidation of methane. The oxygen isotopic compositions of bulk carbonate (+1.7 to +3.7‰) and aragonite cements obtained from microsampling (-0.1 to +1.4‰) indicate that these carbonates were precipitated in mixtures of seawater and freshwater, i.e., in the context of submarine groundwater discharge at the seafloor. The carbon isotopic compositions of authigenic carbonates (-51.9 to -38.1‰) and of aragonite cements (-49.9 to -29.3‰) show that the dissolved inorganic carbon of pore fluids was mostly produced by the anaerobic oxidation of biogenic methane and also partly from the groundwater system.
Schlagworte: carbon , oxygen , geol , mulitcarb

Authigenic carbonate mounds from active methane seeps on the southern Aquitaine Shelf (Bay of Biscay, France): evidence for anaerobic oxidation of biogenic methane and submarine groundwater discharge during formation
Continental Shelf Research (2016)
Catherine Pierre, Jérome Demange, Marie-Madeleine Blanc-Valleron, Stéphanie Dupré

The widespread methane emissions that were discovered in 2013 on the Aquitaine Shelf at water depth between 140 and 220m are associated with authigenic carbonate crusts that cover meter-high subcircular reliefs of 10 to 100m in diameter. These authigenic carbonates are primarily aragonite plus calcite and dolomite, which cement the fine- to medium-grained sandy sediment. The carbonate cement is often pierced by numerous circular cavities of 5 to 10µm in diameter that are considered to be moulds of gas bubbles. Conversely, micron-sized cavities in the aragonite crystals are attributed to dissolution features, in relation to the production of CO2 during the aerobic oxidation of methane. The oxygen isotopic compositions of bulk carbonate (+1.7 to +3.7‰) and aragonite cements obtained from microsampling (-0.1 to +1.4‰) indicate that these carbonates were precipitated in mixtures of seawater and freshwater, i.e., in the context of submarine groundwater discharge at the seafloor. The carbon isotopic compositions of authigenic carbonates (-51.9 to -38.1‰) and of aragonite cements (-49.9 to -29.3‰) show that the dissolved inorganic carbon of pore fluids was mostly produced by the anaerobic oxidation of biogenic methane and also partly from the groundwater system.
Schlagworte: carbon , oxygen , geol , mulitcarb

Methane fates in the benthos and water column at cold seep sites along the continental margin of Central and North America
Deep Sea Research Part I: Oceanographic Research Papers (2016)
Roberta L. Hansman, Andrew R. Thurber, Lisa A. Levin, Lihini I. Aluwihare

The potential influence of methane seeps on carbon cycling is a key question for global assessments, but the study of carbon cycling in surface sediments and the water column of cold seep environments is complicated by the high temporal and spatial variability of fluid and gas fluxes at these sites. In this study we directly examined carbon sources supporting benthic and planktonic food webs at venting methane seeps using isotopic and molecular approaches that integrate this variability. At four seep environments located along North and Central America, microorganisms from two size fractions were collected over several days from 2800 to 9050l of seawater to provide a time-integrated measure of key microbial groups and the carbon sources supporting the overall planktonic microbial community. In addition to water column measurements, the extent of seafloor methane release was estimated at two of the sites by examining the stable carbon isotopic signature (δ13C) of benthic metazoan infauna. This signature reveals carbon sources fueling the base of the food chain and thus provides a metric that represents a time-integrated view of the dominant microbial processes within the sediment. The stable carbon isotopic composition of microbial DNA (δ13C-DNA), which had values between −17.0 and −19.5‰, indicated that bulk planktonic microbial production was not ultimately linked to methane or other 13C-depleted seep-derived carbon sources. Instead these data support the importance of organic carbon derived from either photo- or chemoautotrophic CO2 fixation to the planktonic food web. Results of qPCR of microbial DNA sequences coding for a subunit of the particulate methane monooxygenase gene (pmoA) showed that only a small percentage of the planktonic microbial community were potential methane oxidizers possessing pmoA (<5% of 16S rRNA gene copies). There was an overall decrease of 13C-depleted carbon fueling the benthic metazoan community from 3 to 5cm below the seafloor to the sediment surface, reflecting limited use of isotopically depleted carbon at the sediment surface. Rare methane emission as indicated by limited aerobic methane oxidation acts to corroborate our findings for the planktonic microbial community.

The effects of nitrogen pollutants on the isotopic signal (δ15N) of Ulva lactuca: Microcosm experiments
Marine Pollution Bulletin (2016)
Lucia Orlandi, Edoardo Calizza, Giulio Careddu, Pasquale Carlino, Maria Letizia Costantini, Loreto Rossi

Effects of two chemical forms of Nitrogen (NH4+ and NO3−) on δ15N in Ulva lactuca were analysed separately and in mixture at two concentrations. We assessed whether the δ15N values of U. lactuca discriminate between Nitrogen from synthetic fertilisers (inorganic) and from fresh cow manure (organic), and the isotopic ability of the macroalga to reflect Nitrogen concentrations. Isotopic signature and N content of the macroalga reflected different nitrogenous sources and their concentrations after 48h. The inorganic Nitrogen source (NH4NO3) altered the isotopic values of the macroalgae more than Nitrogen from fresh cow manure (NO3−). δ15N values observed in the mixed solution did not differ from those displayed in NH4NO3 treatment alone. We conclude that stable isotope analysis of U. lactuca collected in an unpolluted site and experimentally submerged in sites suspected of being affected by disturbance is a useful tool for rapid monitoring of anthropogenic discharges of Nitrogen pollutants.
Schlagworte: nitrogen , ocea , poll , elem

Methane fates in the benthos and water column at cold seep sites along the continental margin of Central and North America
Deep Sea Research Part I: Oceanographic Research Papers (2016)
Roberta L. Hansman, Andrew R. Thurber, Lisa A. Levin, Lihini I. Aluwihare

The potential influence of methane seeps on carbon cycling is a key question for global assessments, but the study of carbon cycling in surface sediments and the water column of cold seep environments is complicated by the high temporal and spatial variability of fluid and gas fluxes at these sites. In this study we directly examined carbon sources supporting benthic and planktonic food webs at venting methane seeps using isotopic and molecular approaches that integrate this variability. At four seep environments located along North and Central America, microorganisms from two size fractions were collected over several days from 2800 to 9050l of seawater to provide a time-integrated measure of key microbial groups and the carbon sources supporting the overall planktonic microbial community. In addition to water column measurements, the extent of seafloor methane release was estimated at two of the sites by examining the stable carbon isotopic signature (δ13C) of benthic metazoan infauna. This signature reveals carbon sources fueling the base of the food chain and thus provides a metric that represents a time-integrated view of the dominant microbial processes within the sediment. The stable carbon isotopic composition of microbial DNA (δ13C-DNA), which had values between −17.0 and −19.5‰, indicated that bulk planktonic microbial production was not ultimately linked to methane or other 13C-depleted seep-derived carbon sources. Instead these data support the importance of organic carbon derived from either photo- or chemoautotrophic CO2 fixation to the planktonic food web. Results of qPCR of microbial DNA sequences coding for a subunit of the particulate methane monooxygenase gene (pmoA) showed that only a small percentage of the planktonic microbial community were potential methane oxidizers possessing pmoA (<5% of 16S rRNA gene copies). There was an overall decrease of 13C-depleted carbon fueling the benthic metazoan community from 3 to 5cm below the seafloor to the sediment surface, reflecting limited use of isotopically depleted carbon at the sediment surface. Rare methane emission as indicated by limited aerobic methane oxidation acts to corroborate our findings for the planktonic microbial community.

Seasonal variation in the biochemical compositions of phytoplankton and zooplankton communities in the southwestern East/Japan Sea
Deep Sea Research Part II: Topical Studies in Oceanography (2016)
Naeun Jo, Jae Joong Kang, Won Gyu Park, Bo Ram Lee, Mi Sun Yun, Jang Han Lee, Su Min Kim, Dasom Lee, HuiTae Joo, Jae Hyung Lee, So Hyun Ahn, Sang Heon Lee

The macromolecular composition of phytoplankton communities and the proximate composition of zooplankton communities were measured monthly in the southwestern East/Japan Sea from April to November 2014 in order to identify seasonal changes in, and relationships among, the biochemical compositions in both phytoplankton and zooplankton. The carbohydrate content of phytoplankton was highest in June, whereas the protein content was highest in August and lipids were highest in April. Overall, carbohydrates were dominant (53.2 ± 12.5%) in the macromolecular composition of phytoplankton during the study period. This composition is believed to result from the dominance of diatoms and/or nutrient-depleted conditions. In comparison, the protein level of zooplankton was highest in November, whereas lipids were slightly higher in May than other months. Overall, proteins were the dominant organic compounds (47.9±8.6% DW) in zooplankton communities, whereas lipids were minor components (5.5±0.6% DW). The high protein content of zooplankton might be related to the abundance of copepods, whereas the low lipid content might be due to a relatively high primary production that could provide a sufficient food supply for zooplankton so that they do not require high lipid storage. A significant positive correlation (r=0.971, n=7, p<0.01) was found between the lipid compositions of phytoplankton and zooplankton during our study period with a time lag, which is consistent with the findings from previous studies. More detailed studies on the biochemical composition of phytoplankton and zooplankton are needed to better understand the East/Japan Sea ecosystem's response to the many environmental changes associated with global warming.
Schlagworte: carbon , nitrogen , ocea , elem

The effects of nitrogen pollutants on the isotopic signal (δ15N) of Ulva lactuca: Microcosm experiments
Marine Pollution Bulletin (2016)
Lucia Orlandi, Edoardo Calizza, Giulio Careddu, Pasquale Carlino, Maria Letizia Costantini, Loreto Rossi

Effects of two chemical forms of Nitrogen (NH4+ and NO3−) on δ15N in Ulva lactuca were analysed separately and in mixture at two concentrations. We assessed whether the δ15N values of U. lactuca discriminate between Nitrogen from synthetic fertilisers (inorganic) and from fresh cow manure (organic), and the isotopic ability of the macroalga to reflect Nitrogen concentrations. Isotopic signature and N content of the macroalga reflected different nitrogenous sources and their concentrations after 48h. The inorganic Nitrogen source (NH4NO3) altered the isotopic values of the macroalgae more than Nitrogen from fresh cow manure (NO3−). δ15N values observed in the mixed solution did not differ from those displayed in NH4NO3 treatment alone. We conclude that stable isotope analysis of U. lactuca collected in an unpolluted site and experimentally submerged in sites suspected of being affected by disturbance is a useful tool for rapid monitoring of anthropogenic discharges of Nitrogen pollutants.
Schlagworte: nitrogen , ocea , poll , elem

Seasonal variation in the biochemical compositions of phytoplankton and zooplankton communities in the southwestern East/Japan Sea
Deep Sea Research Part II: Topical Studies in Oceanography (2016)
Naeun Jo, Jae Joong Kang, Won Gyu Park, Bo Ram Lee, Mi Sun Yun, Jang Han Lee, Su Min Kim, Dasom Lee, HuiTae Joo, Jae Hyung Lee, So Hyun Ahn, Sang Heon Lee

The macromolecular composition of phytoplankton communities and the proximate composition of zooplankton communities were measured monthly in the southwestern East/Japan Sea from April to November 2014 in order to identify seasonal changes in, and relationships among, the biochemical compositions in both phytoplankton and zooplankton. The carbohydrate content of phytoplankton was highest in June, whereas the protein content was highest in August and lipids were highest in April. Overall, carbohydrates were dominant (53.2 ± 12.5%) in the macromolecular composition of phytoplankton during the study period. This composition is believed to result from the dominance of diatoms and/or nutrient-depleted conditions. In comparison, the protein level of zooplankton was highest in November, whereas lipids were slightly higher in May than other months. Overall, proteins were the dominant organic compounds (47.9±8.6% DW) in zooplankton communities, whereas lipids were minor components (5.5±0.6% DW). The high protein content of zooplankton might be related to the abundance of copepods, whereas the low lipid content might be due to a relatively high primary production that could provide a sufficient food supply for zooplankton so that they do not require high lipid storage. A significant positive correlation (r=0.971, n=7, p<0.01) was found between the lipid compositions of phytoplankton and zooplankton during our study period with a time lag, which is consistent with the findings from previous studies. More detailed studies on the biochemical composition of phytoplankton and zooplankton are needed to better understand the East/Japan Sea ecosystem's response to the many environmental changes associated with global warming.
Schlagworte: carbon , nitrogen , ocea , elem

High-resolution carbon isotope records of the Toarcian Oceanic Anoxic Event (Early Jurassic) from North America and implications for the global drivers of the Toarcian carbon cycle
Earth and Planetary Science Letters (2016)
T.R. Them, B.C. Gill, A.H. Caruthers, D.R. Gröcke, E.T. Tulsky, R.C. Martindale, T.P. Poulton, P.L. Smith

The Mesozoic Era experienced several instances of abrupt environmental change that are associated with instabilities in the climate, reorganizations of the global carbon cycle, and elevated extinction rates. Often during these perturbations, oxygen-deficient conditions developed in the oceans resulting in the widespread deposition of organic-rich sediments — these events are referred to as Oceanic Anoxic Events or OAEs. Such events have been linked to massive injections of greenhouse gases into the ocean–atmosphere system by transient episodes of voluminous volcanism and the destabilization of methane clathrates within marine environments. Nevertheless, uncertainty surrounds the specific environmental drivers and feedbacks that occurred during the OAEs that caused perturbations in the carbon cycle; this is particularly true of the Early Jurassic Toarcian OAE (∼183.1 Ma). Here, we present biostratigraphically constrained carbon isotope data from western North America (Alberta and British Columbia, Canada) to better assess the global extent of the carbon cycle perturbations. We identify the large negative carbon isotope excursion associated with the OAE along with high-frequency oscillations and steps within the onset of this excursion. We propose that these high-frequency carbon isotope excursions reflect changes to the global carbon cycle and also that they are related to the production and release of greenhouse gases from terrestrial environments on astronomical timescales. Furthermore, increased terrestrial methanogenesis should be considered an important climatic feedback during Ocean Anoxic Events and other similar events in Earth history after the proliferation of land plants.

Following the flow of ornithogenic nutrients through the Arctic marine coastal food webs
Journal of Marine Systems (2016)
Katarzyna Zmudczyńska-Skarbek, Piotr Balazy

Arctic colonial seabirds are recognized as effective fertilizers of terrestrial ecosystems by delivering marine-origin nutrients to the vicinities of their nesting sites. A proportion of this ornithogenic matter is then thought to return to the sea and, concentrated within a smaller area, locally provides additional nutrients for the nearshore marine communities. The aim of this study was to assess the presence and impact of local ornithogenic enrichment on two important elements of the Arctic coastal food web: (1) the planktonic pathway originating in the surface water, and (2) the benthic pathway based on benthic primary production. We sampled two areas in Isfjorden (Spitsbergen): one located below a coastal mixed breeding colony of guillemots and kittiwakes, and a control area not influenced by the colony. Slightly higher nitrogen stable isotope ratios (δ15N) were found in particulate organic matter suspended in the surface water (POM), sedimentary organic matter (SOM) from outside the zone of dense kelp forest, and the predatory/scavenging whelks Buccinum sp. collected below the seabird colony (the components recognized as following the planktonic path). In contrast, no ornithogenic isotopic enrichment was detected in the herbivorous gastropod Margarites helicinus or in SOM from the kelp zone (benthic path). The data are compatible with those obtained from the same location a year before, showing δ15N enrichment in predatory/scavenging hermit crabs Pagurus pubescens below the seabird, and no such changes in kelps Saccharina latissima or their presumed consumers, sea urchins Strongylocentrotus droebachiensis (Zmudczyńska-Skarbek et al., 2015a). The results suggest that, in the conditions of periodic, short-term pulses of ornithogenic nutrient inputs to the local marine environment, that typify the short High Arctic summer, planktonic organisms are the initial organisms to incorporate these nutrients, before transfer to the benthic food web via pelagic-benthic coupling. However, the supply of ornithogenic resources alone is insufficient to support benthic producers and the trophic pathways based on them. Overall, the ornithogenic subsidies are not a major nutrient source for marine organisms from below the seabird colony.
Schlagworte: carbon , nitrogen , ecol , elem